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Some Results on Novikov–Poisson Algebras

Yufeng Zhao,1,5 Chengming Bai,2,3 and Daoji Meng4

Novikov algebras were introduced in connection with the Poisson brackets of hydrody-
namic type and Hamiltonian operators in the formal variational calculus. A Novikov–
Poisson algebra is a Novikov algebra with a compatible commutative associative alge-
braic structure, which was introduced to construct the tensor product of two Novikov
algebras. In this paper, we commence a study of finite-dimensional Novikov–Poisson
algebras. We show the commutative associative operation in a Novikov–Poisson al-
gebra is a compatible global deformation of the associated Novikov algebra. We also
discuss how to classify Novikov–Poisson algebras. And as an example, we give the
classification of 2-dimensional Novikov–Poisson algebras.
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1. INTRODUCTION

Poisson brackets of hydrodynamic type were introduced and studied in Refs.
(Balinskii and Novikov, 1985; Dubrovin and Novikov, 1983, 1984; Zel’manov,
1987):

{ui (x), u j (y)} = gi j (u(x))δ′(x − y)+
N∑

k=1

uk
xbi j

k (u(x))δ(x − y). (1.1)

In Ref. (Balinskii and Novikov, 1985), in order to define a local translationally in-
variant Lie algebra arising from Eq. (1.1), a new algebraA with a bilinear product
(x, y)→ xywas introduced to satisfy the following equations:

(x1, x2, x3) = (x2, x1, x3) (1.2)

and
(x1x2)x3 = (x1x3)x2, (1.3)
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for x1, x2, x3 ∈ A, where

(x1, x2, x3) = (x1x2)x3− x1(x2x3). (1.4)

The algebraA satisfying Eqs. (1.2)–(1.3) is called a “Novikov algebra” by
Osborn (Osborn, 1992a,b, 1994; Xu, 1996, 1997). It also has a close connection to
some Hamiltonian operators in the formal variational calculus (Gel’fand and Diki,
1975, 1976; Gel’fand and Dorfman, 1979; Xu, 1995, 2000) and some nonlinear par-
tial differential equations, such as KdV equations (Dubrovin and Novikov, 1983;
Gel’fand and Diki, 1975, 1976). On the other hand, Novikov algebras are a spe-
cial class of left-symmetric algebras which only satisfy Eq. (1.3). Left-symmetric
algebras are nonassociative algebras arising from the study of affine manifolds,
affine structures, and convex homogeneous cones (Bai and Meng, 2000; Burde,
1998; Kim, 1986; Vinberg, 1963).

The commutator of a Novikov algebra (or a left-symmetric algebra)A

[x, y]− = xy− yx, (1.5)

defines a (subadjacent) Lie algebraA−. LetLx, Rx denote the left and right multipli-
cation, respectively, i.e.,Lx(y) = xy, Rx(y) = yx, ∀x, y ∈ A. Then for a Novikov
algebra, the left multiplication operators form a Lie algebra and the right multipli-
cation operators are commutative. A Novikov algebra A is called right-nilpotent or
transitive if everyRx is nilpotent. The transitivity corresponds to the completeness
of the affine manifolds in geometry (Kim, 1986; Vinberg, 1963).

In general, it is a natural way to construct new examples of algebras by means
of the tensor product. However, as in the case of Lie algebras, usually the tensor
product of two arbitrary Novikov algebras is not a Novikov algebra any more.
Following the ideas of Lie–Poisson algebras, Xu in Ref. (Xu, 1996) introduced the
concept of Novikov–Poisson algebras. He proved that there exists a Hamiltonian
superoperator associated to a Novikov–Poisson algebra (A, · , ∗) with an identity
element 1 in (A, ·) such that 1∗ 1= 2 (Xu, 2000). Moreover, the tensor product
of two Novikov–Poisson algebras is still a Novikov–Poisson algebra (Xu, 1996).
In Ref. (Xu, 1997) X. Xu gave the classification of finite-dimensional Novikov–
Poisson algebras whose Novikov algebras are simple over a field with characteristic
p > 2 and the infinite dimensional Novikov–Poisson algebras whose Novikov
algebras are simple with an idempotent element over a field with characteristic
0. However, there is not a general theory of Novikov–Poisson algebras until now,
even in low dimensions. On the other hand, the classification of Novikov algebras
in low dimensions is only up to dimension 3 (Bai and Meng, 2001a). Therefore, it
is quite useful to obtain some interesting Novikov algebras in higher dimensions
by the tensor products of Novikov algebras.

In this paper, we will commence a study of finite-dimensional Novikov–
Poisson algebras. The paper is organized as follows. In Section 2, we briefly
discuss some basic properties and an important construction of Novikov–Poisson
algebras. In Section 3, we discuss the relation between the deformation theory
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of Novikov algebras and Novikov–Poisson algebras. In Section 4, we discuss
how to classify Novikov–Poisson algebras. As an example, we give a classifi-
cation of Novikov–Poisson algebras in dimension 2. We also briefly discuss the
4-dimensional Novikov algebras which are the tensor product of two Novikov
algebras in dimension 2. In Section 5, we give some conclusion based on the
discussion in the previous sections.

2. NOVIKOV–POISSON ALGEBRAS

A Novikov–Poisson algebraA is a vector space with two operations “·, ∗”
such that (A, ·) forms a commutative associative algebra (which may not have
an identity element) and (A, ∗) forms a Novikov algebra (which satisfies Eqs.
(1.2)–(1.3)) with the compatible identities:

(x · y) ∗ z= x · (y ∗ z) = y · (x ∗ z), (2.1)

(x ∗ y) · z− x ∗ (y · z) = (y ∗ z) · z− y ∗ (x · z), (2.2)

for x, y, z ∈ A. If ( A, ·, ∗) is a Novikov–Poisson algebra, we also say (A, ∗) is
a Novikov algebra over the commutative associative algebra (A, ·) or (A, ·) is a
commutative associative algebra over the Novikov algebra (A, ∗).

From Ref. (Xu, 1996), for two Novikov–Poisson algebras (A1, ·, ∗) and
(A2, · , ∗), we can define two operations· and ∗ on A1⊗ A2 such that (A1⊗
A2, · , ∗) forms a Novikov–Poisson algebra by

(x1⊗ x2) · (y1⊗ y2) = (x1 · y1)⊗ (x2 · y2) (2.3)

(x1⊗ x2) ∗ (y1⊗ y2) = (x1 ∗ y1)⊗ (x2 · y2)+ (x1 · y1)⊗ (x2 ∗ y2), (2.4)

for xi , yi ∈ Ai , i = 1, 2.
In fact, Eqs. (2.3)–(2.4) can be expressed in terms of linear transformations

(matrices), which will be useful in application. LetL∗x, R∗x denote the left and
right multiplication of the Novikov algebra (A, ∗), respectively andL ·x, R·x denote
the left and right multiplication of the commutative associative algebra (A, ·),
respectively, that is

L∗x(y) = x ∗ y, R∗x(y) = y ∗ x, L ·x(y) = x · y, R·x(y) = y · x, ∀x, y ∈ A. (2.5)

Then Eqs. (2.3)–(2.4) are equivalent to the following equations:

L∗a⊗b = L∗a ⊗ L ·b + L ·a ⊗ L∗b; R∗a⊗b = R∗a ⊗ R·b + R·a ⊗ R∗b; (2.6)

L ·a⊗b = L ·a ⊗ L ·b; R·a⊗b = R·a ⊗ R·b, (2.7)

for anya ∈ A1, b ∈ A2 and the⊗appearing in the right hand of the above equations
is the tensor product of two linear transformations over the tensor spaces. Recall
that the tensor product of two linear transformationsf1 and f2 is given by (f1⊗ f2)
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(a⊗ b) = f1(a)⊗ f2(b). In fact, for anya, c ∈ A1, b, d ∈ A2, we have

L∗a⊗b(c⊗ d) = (a⊗ b) ∗ (c⊗ d) = (a ∗ c)⊗ (b · d)+ (a · c)⊗ (b ∗ d)

= L∗a(c)⊗ L ·b(d)+ L ·a(c)⊗ L∗b(d) = (L∗a ⊗ L ·b + L ·a ⊗ L∗b)(c⊗ d).

Similarly, the other equations also can be obtained from Eqs. (2.3)–(2.4). On the
other hand, it is also easy to obtain Eqs. (2.3)–(2.4) from Eqs. (2.6)–(2.7).

Example 2.1. Let {el
1, el

2}(l = 1, 2) be a basis of Novikov–Poisson algebras
(Al , ∗, ·) respectively (the classification is given in Section 4) andel

i ∗ el
j =∑n

k=1 clk
i j ek and el

i · el
j =

∑n
k=1 dlk

i j ek. Then by Eq. (2.6), we can obtain a
4-dimensional Novikov algebra defined by (under the basis{e1

1 ⊗ e2
1, e1

1 ⊗ e2
2, e1

2 ⊗
e2

1, e1
2 ⊗ e2

2})

R∗e1
i ⊗e2

j
=
(

c11
1i c12

1i

c11
2i c12

2i

)
⊗
(

d21
1 j d22

1 j

d21
2 j d22

2 j

)
+
(

d11
1i d12

1i

d11
2i d12

2i

)
⊗
(

c21
1 j c22

1 j

c21
2 j c22

2 j

)

=


c11

1i d21
1 j + d11

1i c21
1 j c11

1i d22
1 j + d11

1i c22
1 j c12

1i d21
1 j + d12

1i c21
1 j c12

1i d22
1 j + d12

1i c22
1 j

c11
1i d21

2 j + d11
1i c21

2 j c11
1i d22

2 j + d11
1i c22

2 j c12
1i d21

2 j + d12
1i c21

2 j c12
1i d22

2 j + d12
1i c22

2 j

c11
2i d21

1 j + d11
2i c21

1 j c11
2i d22

1 j + d11
2i c22

1 j c12
2i d21

1 j + d12
2i c21

1 j c12
2i d22

1 j + d12
2i c22

1 j

c11
2i d21

2 j + d11
2i c21

2 j c11
2i d22

2 j + d11
2i c22

2 j c12
2i d21

2 j + d12
2i c21

2 j c12
2i d22

2 j + d12
2i c22

2 j


Let (A1, ∗, ·) and (A2, ∗, ·) be two Novikov–Poisson algebras. Then by Eqs.

(2.3)–(2.4) or Eqs. (2.6)–(2.7), it is easy to obtain the following conclusions:

(a) (A1⊗ A2, ∗, ·) is isomorphic (see Section 4) to (A2⊗ A1, ∗, ·) through
the exchange operatorτ : A1⊗ A2→ A2⊗ A1, τ (a⊗ b) = b⊗ a,
∀a ∈ A1, b ∈ A2.

(b) If both (A1, ∗) and (A2, ∗) are commutative Novikov algebras, then (A1⊗
A2, ∗) given by Eq. (2.4) is commutative.

(c) Let (A1, ∗) and (A2, ∗) be two associative Novikov algebras. Then (A1⊗
A2), ∗) given by Eq. (2.4) is associative if for anyx, y, z in Ai , we have

x ∗ (y · z) = (x ∗ y) · z. (2.8)

(d) Recall that a Lie–Poisson algebra (A, [, ], ·) is a vector space with two
operations [, ],· such that (A, [, ]) forms a Lie algebra and (A, ·) forms a
commutative associative algebra with the compatible condition:

[x, y · z] = [x, y] · z+ y · [x, z], ∀x, y, z ∈ A. (2.9)

Then for a Novikov–Poisson algebra (A, ∗, ·), (A, [, ]−, ·) is a Lie–Poisson
algebra if and only if

x ∗ (y · z) = x · (y ∗ x), ∀x, y, z ∈ A (2.10)

where [x, y]− = x ∗ y− y ∗ x is given by Eq. (1.5).
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In general, it is not easy to construct the Novikov–Poisson algebras. However,
there is a class of Novikov–Poisson algebras obtained from commutative associa-
tive algebras (Xu, 1997): Let (A, ·) be a commutative associative algebra andD
be its derivation. Then with the following product:

a ∗ b = a · Db, (2.11)

(A, ∗) becomes a Novikov algebra. This Novikov algebraic structure was firstly
given by S. Gel’fand and (A, ∗) is proved to be transitive in Ref. (Bai and Meng,
2001b). Moreover, Xu proved that (A, ∗, ·) is a Novikov–Poisson algebra.

3. NOVIKOV–POISSON ALGEBRAS AND THE DEFORMATION
OF NOVIKOV ALGEBRAS

In Ref. (Bai and Meng, 2001b), we give a deformation theory of Novikov
algebras, which has a close relation with Novikov–Poisson algebras. At first, for
self-contained, we briefly introduce the deformation theory of Novikov algebras
given in Ref. (Bai and Meng, 2001b). Let (A, ∗) be a Novikov algebra, andgp :
A× A→ A be a bilinear product defined by

gq(a, b) = a ∗ b+ qG1(a, b)+ q2G2(a, b)+ q3G3(a, b)+ . . . (3.1)

whereGi are bilinear products withG0(a, b) = a ∗ b. We call (Aq, gq) a defor-
mation of (A, ∗) if ( Aq, gq) is a family of Novikov algebras. In particular, we call
G1 an global deformation if the deformation is given by

gq(a, b) = a ∗ b+ qG1(a, b), (3.2)

that is,G2 = G3 = . . . = 0. G1 is a global deformation if and only if

G1(a, b ∗ c) − G1(a ∗ b, c)+ G1(b ∗ a, c)− G1(b, a ∗ c)+ a ∗ G1(b, c)

−G1(a, b) ∗ c+ G1(b, a) ∗ c− b ∗ G1(a, c) = 0; (3.3)

G1(a, b) ∗ c − G1(a, c) ∗ b+ G1(a ∗ b, c)− G1(a ∗ c, b) = 0. (3.4)

G1(a, b ∗ c) − G1(a ∗ b, c)+ G1(b ∗ a, c)− G1(b, a ∗ c)+ a ∗ G1(b, c)

−G1(a, b) ∗ c+ G1(b, a) ∗ c− b ∗ G1(a, c) = 0; (3.5)

G1(a, b) ∗ c − G1(a, c) ∗ b+ G1(a ∗ b, c)− G1(a ∗ c, b) = 0. (3.6)

Moreover,G1 is in the space of 2-cocycles, andG1 is called a compatible global
deformation ifG1 is commutative. Any Novikov algebra and its compatible global
deformation have the same subadjacent Lie algebra. A global deformation is called
special if the family of Novikov algebras (Aq, gq) defined by Eq. (3.2) is mutually
isomorphic forq 6= 0. We proved that the Novikov algebras in dimension≤3 can
be realized as the algebras defined through Eq. (2.11) and their compatible global
deformations in Refs. (Bai and Meng, 2001b,c). Moreover,
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Claim. Let (A, ∗, ·) be a Novikov-Poisson algebra. Then bothG1(a, b) = a · b
andG1(a, b) = x · a · b for a fixedx ∈ A are the compatible global deformations
of (A, ∗). Hence, (A, ∗x) becomes a Novikov algebra by the following product:

a ∗x b = a ∗ b+ x · a · b. (3.7)

wherex ∈ F or x ∈ A.

In fact, forG1(a, b) = a · b, Eq. (3.3) holds since

a · (b ∗ c)− (a ∗ b) · c+ (b ∗ a) · c− b · (a ∗ c) = b ∗ (a · c)− a ∗ (b · c);

a ∗ (b · c)− (a · b) ∗ c+ (b · a) ∗ c− b ∗ (a · c) = a ∗ (b · c)− b ∗ (a · c),

and Eq. (3.4) holds since

(a · b) ∗ c− (a · c) ∗ b+ (a ∗ b) · c− (a ∗ c) · b = 0.

Obviously Eq. (3.5) and Eq. (3.6) hold due to commutativity. Similarly, Eq. (3.3)–
Eq. (3.6) hold forG1(a, b) = x · a · b for a fixedx ∈ A. h

Actually, Eq. (3.7) with a fixedx ∈ A is firstly given by Xu (Xu, 1997).
Moreover, for a Novikov–Poisson algebra (A, ∗, ·), there is a class of Novikov–
Poisson algebras (A, ∗x, ·y) with the following products (Xu, 1997):

a ∗x b = a ∗ b+ x · a · b, a ·y b = y · a · b, (3.8)

for any fixedx, y ∈ A or F. Moreover, combining Eq. (3.8) with Eq. (2.11), we
have the following corollary:

Corollary. (Xu, 1997) Let (A, ·) be a commutative associative algebra and D
be its derivation. Then for any fixed elements x, y ∈ A or F, (A, ∗x, ·y) becomes
a Novikov–Poisson algebra with the following products:

a ∗x b = a · Db+ x · a · b, a ·y b = y · a · b. (3.9)

In fact, the Novikov algebras obtained through by Eq. (3.9) forx ∈ F is
given by Filipov (Filipov, 1989). On the other hand, there exist Novikov–Poisson
algebras which cannot be obtained from Eq. (3.9), which can be seen from the
next section.

4. ON THE CLASSIFICATION OF NOVIKOV–POISSON ALGEBRAS

Since there are two operations in a Novikov–Poisson algebra, it is not easy to
obtain the classification of Novikov–Poisson algebras in the sense of isomorphism.
Two Novikov–Poisson algebras (Ai , ∗, ·) are isomorphic if and only if there exists
a linear isomorphismf : A1→ A2, such that

f (a ∗ b)− f (a) ∗ f (b), f (a · b) = f (a) · f (b), ∀a, b ∈ A1. (4.1)

Thus we often need to discuss two algebraic isomorphisms simultaneously. More-
over, it is obvious that a linear transformation of a Novikov–Poisson algebra is
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an (algebraic) isomorphism (called an automorphism) if and only if it is an au-
tomorphism of both the Novikov algebra and the commutative algebra, that is, it
is in the intersection of the automorphism groups of the Novikov algebra and the
commutative algebra.

Usually, we fix an algebra system which has been classified at first and then
we classify another algebraic structure which is compatible with the former. In
general, we need the following three steps:

Step 1: Classify one algebra system with structure constants;
Step 2: For the fixed algebra system, find the compatible structure constants of the

second algebra system;
Step 3: Classify those compatible structure constants of the second algebra system.

Here, we would like to point out that the corresponding linear transformations
describing the isomorphic relations between different structure constants of the
second algebra system must be in the automorphism group of the first algebra
system.

For a Novikov–Poisson algebra, because the structure of the commutative
associative algebra is much simpler than that of the Novikov algebra, we can
give the classification of Novikov–Poisson algebras as the classification of the
compatible commutative associative algebras for the fixed Novikov algebras whose
classification in low dimensions has been given in Ref. (Bai and Meng, 2001a).

Let {ei } be a basis of a Novikov–Poisson algebra (A, ∗, ·). Then (A, ∗, ·) is
determined by the (form) characteristic matrix given as

(A, ∗) =
∑n

k=1 ck
11ek . . .

∑n
k=1 ck

1nek

. . . . . . . . .∑n
k=1 ck

n1ek . . .
∑n

k=1 ck
nnek

 ,

(A, ·) =
∑n

k=1 dk
11ek . . .

∑n
k=1 dk

1nek

. . . . . . . . .∑n
k=1 dk

n1ek . . .
∑n

k=1 dk
nnek

 , (4.2)

whereei ∗ ej =
∑n

k=1 ck
i j ek andei ∗ ej =

∑n
k=1 dk

i j ek.
For a fixed (A, ∗), the elements in (A, ·) should satisfy the following equa-

tions:

dp
i j = dp

ji ,
n∑

l=1

dl
i j d

p
lk =

n∑
l=1

dl
jkdp

il , p = 1, . . . , n; (4.3)

n∑
l=1

dl
i j c

p
lk =

n∑
l=1

cl
jkdp

il , p = 1, . . . , n; (4.4)

n∑
l=1

(
cl

i j d
p
lk − dl

jkcp
il

) = n∑
l=1

(
cl

j i d
p
lk − dl

ikcp
jl

)
, p = 1, . . . , n. (4.5)
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From the classification of Novikov algebras in dimension 2 given in Ref. (Bai
and Meng, 2001a), it is easy to get the corresponding automorphism groups. Based
on these results and through Eqs. (4.3)–(4.5) and direct computation, we can give
the classification of Novikov–Poisson algebras in dimension 2 in the following
table: (m, n ∈ C)

Compatible
Characteristic Automorphism characteristic Characteristic
matrix (A, ∗) group aut (A, ∗) matrix (A, ·) matrix (A, ·)

(T1)

(
0 0

0 0

) (
a11 a12

a21 a22

) (
a11 a12

a21 a22

) (
0 0

0 0

)
,

(
0 0

0 e1

)
,

a11a22− a12a22 6= 0
(

e1 0

0 e2

)
,

(
e1 0

0 0

)
,

(
0 e1

e1 e2

)

(T2)

(
0 0

0 e1

) (
a11 0

a21
√

a11

) (
0 me2

me2 ne1 +me2

) (
0 0

0 me1

)
,

(
0 e1

e1 e2

)
a11 6= 0

(T3)

(
0 0

−e1 0

) (
a11 0

0 1

) (
0 me1

me1 ne1 +me2

) (
0 me1

me1 me2

)
,

(
0 me1

me1 e1 +me2

)
a11 6= 0

(N1)

(
e1 0

0 e2

) (
1 0

0 1

) (
ne1 0

0 me2

) (
ne1 0

0 me2

)
, (m≥ n)

(
1 0

0 1

)

(N2)

(
0 0

0 e2

) (
a11 0

0 1

) (
ne1 0

0 me2

) (
e1 0

0 me2

)
,

(
0 0

0 me2

)
a11 6= 0

(N3)

(
0 e1

e1 e2

) (
a11 0

0 1

) (
0 me2

me2 ne1 +me2

) (
0 me1

me1 me2

)
,

(
0 me1

me1 e1 +me2

)
a11 6= 0

(N4)

(
0 e1

0 e2

) (
a11 0

a21 1

) (
0 me1

me1 ne1 +me2

) (
0 me1

me1 me2

)
,

(
0 0

0 e1

)
a11 6= 0

(N5)

(
0 e1

0 e1 + e2

) (
1 0

a21 1

) (
0 me1

me1 ne1 +me2

) (
0 me1

me1 me2

)
,

(
0 0

0 me1

)

(N6)

(
0 e1

le1 e2

) (
a11 0

0 1

) (
0 me1

me1 ne1 +me2

) (
0 me1

me1 me2

)
,

(
0 me1

me1 e1 +me2

)
l 6= 0, 1 a11 6= 0

Using a similar way, we can obtain the classification of Novikov–Poisson
algebras in dimension 3.
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Remark 4.1. Comparing the characteristic matrix (A, ·) in the above table with
the realization of Novikov algebras in dimension 2 given in Refs. (Bai and Meng,
2001b,c), we can see that many Novikov–Poisson algebras cannot be obtained
from Eq. (3.9). In fact, the Novikov–Poisson algebra which (A, ∗) is (T3) and
(A, ·) = ( 0 me1

me1 e1 +me2
) is just an example.

Remark 4.2. We can easily obtain the characteristic matrix of a 4-dimensional
Novikov algebra which is the tensor of two Novikov–Poisson algebras in dimension
2 through the above table and the formula given in Example 2.1. For example, the
characteristic matrix of the tensor of type (T3) which (A, ·) = ( 0 me1

me1 me2
) and type

(N5) which (A, ·) = ( 0 m′e1
m′e1 m′e2

) is
0 0 0 me1

0 0 0 me1+me2

0 (m−m′)e1 0 me3

−m′e1 me1+ (m−m′)e2 0 m(e3+ e4)


However, it is not easy to classify these characteristic matrices (even may be
unnecessary) because for any isomorphismF : A1⊗ A2→ A1⊗ A2 of the tensor
of two Novikov–Poisson algebras (Ai , ∗, ·), there may not necessarily exist two
isomorphismsfi : Ai → Ai such thatF = f1⊗ f2.

5. DISCUSSION AND CONCLUSION

From the discussion in the previous sections, we have the following
conclusion:

(a) There exist nontrivial commutative associative algebras over any Novikov
algebra in dimension 2.

(b) We can see that there are the same commutative associative algebras over
many (nonisomorphic) Novikov algebras. One of the reasons is perhaps
due to their close relations with the realization theory given in Refs. (Bai
and Meng, 2001b,c).

(c) It is easy to see that the tensor of two Novikov–Poisson algebras whose
Novikov algebras are transitive may not be transitive. It is an open ques-
tion when the tensor product of two Novikov–Poisson algebras is still
transitive.
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